\begin{tabbing} (\=(((((Unfold `last` 0) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n \-\\[0ex])\=,(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN (Reduce 0))$\cdot$) \\[0ex] \\[0ex]C\=ollapseTHEN (Assert $\parallel$$L$$\parallel$ $>$ 0 \+ \\[0ex]THENL [((((RW assert\_pushdownC ({-}1)) \-\\[0ex]CollapseTHENA ( \-\\[0ex](\=Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$)\+ \\[0ex] \\[0ex]Collaps\=eTHEN (Easy))$\cdot$; \+ \\[0ex]((RWO "select\_cons\_tl" 0) \-\\[0ex]CollapseTHEN ( \-\\[0ex](Auto\_aux (first\_nat 1:n) ((first\_nat 2:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$] \\[0ex]))$\cdot$ \end{tabbing}